CALCULATION OF FRICTION HEAD LOSS IN PLUG
FLOW OF GAS - LIQUID MIXTURE IN TUBES

G. P. Isupov and V. A, Mamaev UDC 532.529.5

The resistance coefficient is derived from the hydrodynamic equations for multiphase
liquids by using an empirical relationship for the dynamic velocity and general semi-
empirical considerations.

The resistance of gas—liquid plug flow has been fairly well investigated experimentally in [1-4].
None of them give a soundly based method of calculating the resistance in the case of plug flow of a gas
—liquid mixture., In the present paper the equations of motion of multicomponent mixtures, derived in [5],
are used to find the hydraulic resistance coefficient for plug flow of a gas—liquid mixture, By plug flow we
mean flows which have no distinct interface (plug flows, plug flows with foam formation, etc.).

The equation of motion of a multicomponent mixture after simplification for the case of a2 unidimen-
sional (in relation to the mean values) gas —liquid flow has the form [5]

dp [ = ] dE‘ d bealior e
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The term in the parentheses in the equation of motion is the turbulent stress of the gas—liquid flow. In

addition to the moments associated with one-phase flow, the equation of motion (1) has mixed moments be-
tween the fluctuations of the velocities and concentrations of the two phases.

We put moments of type py golulx [y> 28 in one-phase flow [6], in the following form:

(Plplu’[x 1y = 61911\, vy d;x , (2)
Poslhy, Uy = .0, vy T;“ . (3)

We assume here that the true gas content is constant over the entire cross section of the tube.

We express the mixed moments between the velocity and concentration fluctuations in the two phases
in terms of moments of the type gy wuz.'xuiy by means of the relations
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where f; and f, are functions which can be determined experimentally. Figure 1 shows the dynamic velocity
w, of the mixture as a function of the discharge gas content B for different Froude numbers
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It has been experimentally established that the last two functions in expression (6) are numerically equal,
The tangential stress on the tube wall is given by the equation [7]
dp R

- (7)

TOZ

The dynamic velocity of the mixture is connected with the discharge gas contént and Froude number by the
following empirical expression:

Wy = Wep + Wi (By— 52) exp (_ —Ilill‘.‘) (ky = 0.4), )

where w,, = u,; is the dynamic velocity at 8 = 0.

For subsequent calculations we need to express the true velocity of one phase in terms of the true
velocity of the other.

The velocity of the liquid phase is expressed in terms of the velocity of the mixture by the following
relationship:

- b
U, = U ==, 9
1= 9)
where
Jm: ;161 +52?sz ﬁ1 =1— ﬁz- (10)
Substituting equation (10) in expression (9), we obtain:
- - 8.0
Uy = (@ + UyPy) E—l‘ = + ”ﬁp‘z’“ ) (11)
1 P
from which, using the relationship
1 —B; =B, (12)
we have
ap, — 5, 2P (13)
P1
and we finally obtain the following formulas:
iy =ty by (14)
PP,
0, =i by (15)
9.5,

We assume that the moments of type Zol plul'xul' are proportional to the dynamic velocity Wy, and
the mixed moments between the velocity and concentrationfluctuations are proportional tow, (8, — @) €xp K
/ Fr).

We express the moments of type gal plulx“l and the mixed moments between the velocity and concen-
tration fluctuations of the two phases in terms o¥the turbulent viscosity of the mixture and the gradients of
the mean velocities of the corresponding phases:

- m— - du,.,

P10 Uy = P10y UWioY dyl. ’ (16)

- — - du.

PoDylly, Uy, = Pop¥Wy ol {;x ’ (17)
01 (9] 4), tay + @) Uy s + @7, ) = plww*y = (B, — @) e, (18)
%m%%f%%%+%hwwﬂwm—-@ — e (19)
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The total stress in the flow, equal to the sum of the viscous and turbulent stresses, is

dux 1/Fr - d x T\ o K/Fr
dp- [+ B =20 ™7 ooy <= (L B =0 ] (20)

dﬁ du,

@1?’*1 + %Mz dy -+ (le’”*oypl
Replacing the velocity of the gas phase in this expression by the velocity of the liquid phase by using for-
mulas (14) and (15), dividing it by the density of the mixture

O 9161 + Pﬁz 21)
and putting

Pty + Pally . §152
Pm Pm by
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Pm Pm Pably
we obtain the following differential equation for the gradient of the mean velocity of the liquid phase:
G z (23)
Integrating it, we have
oo = 22 (1 o) 1 (14 220 ) 24
aty=k
tye = Uy, (25)

where Eio is the velocity of the liquid phase at the level of the mean roughness height. It was assumed in the
integration that ¢; and ¢, do not vary over the cross section of the tube. Determining the constant of inte-
gration from the boundary condition (25) and substituting it in equation (24), we obtain

Wy oy B
_ . 1 “rodD
U [1 + (B — ‘P )e kI ] In T Vg b o8
Weo »B ) + ®WeoBk (26)

Ve
where b =u,/ w,, is a function which can be determined experimentally.

To find a theoretical equation for the pressure gradient we replace the dynamic velocity in Eq. (26)
by its value given by expression (6). We then have

1 +Mw*03yu
ey T\ ,—Ri/Fr Y
l/ 01 P101 +0,9, 05 - L+ @ —a)e In VgBk +b= 1—~ ; (27)
Ty B 1 - XxoBF Wy o 2V kg

Vg

where y is the coordinate of the mean velocity of the liquid phase. Replacing the tangential stress in
this expression by the pressure gradient from (7) and squaring the obtained relationship we obtain a theore-
tical equation for the pressure gradient in the plug regime

_g _ ﬁgoﬁpﬁf;; e 28)
We find the hydraulic resistance coefficient from formula (27)
\ I
e 2[1 + (Bz;;a%)e ] 1n1 Buk %Bz’;*ok -+ b. (29)
Ve
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Fig. 1. Dynamic velocity of gas—liquid flow as function of discharge gas content and Froude
number of mixture (tube with d =100 mm): 1) Fr = 0.4; 2) 0.8; 3) 2.0; 4) 4.0; 5) 8; 6) 20.

Fig. 2. Comparison of theoretical and experimental data for hydraulic resistance coefficient:
1) Fr = 0.4; 2) 2; 3) 4-20 (d = 50 and 10 mm).

We neglect the 1 in the numerator of the logarithm and from Eq. (29) we obtain
lﬁ — 2 [1 -+ (62—5_2)6—;(1/Fr] In { Ve 4+ _k__ + b] .
V g %xB g0 BY, ®R

We replace the dynamic velocity in the denominator of the logarithmic expression by the mean velocity of
the liquid phase, and the hydraulic resistance coefficient by using the formula

Ay
Wyo = Usrx = Uy ]/—81* 81)

and after manipulation of the expression under the logarithm sign we have

Lo 2[4 —p)e ™ { V8 [ P 0 ( ».p )2] k }
e = 1 in _ _ PP ¥1Pa 4+ b (32)
1/}"m B %VE Re; (9y + 09,) * Re, (9, chP) Py ’

(30)

R

We put formula (32) in the following form:

! [+ B, — e ™] {[ 4, ( % 0P (q_hﬁz ) Ask} b}
——=—A ] — — R | T 4| ey, (33)
vV A ' B & vV Ay \Re; (¢, + 09,) Re, (9, pPy) \ ¢, ) d

m

Formula (33) with 8 = 0 becomes the Colebrook formula for a one-phase flow with coefficients Ay, A,, and
Ag, equal to 2, 2.5, 1/2.8, respectively [8]. Substituting these coefficients in relationship (33), we obtain

! L+ B —p)e ™™ { 25 % 0P, 9.8, k }
= _9 2 1 - .0 . £ b, 34
v)\m B g{ V’h ( Re; (; + p@2) * Re, (¢, + pP,) ( Pof1 ) ) i 2,84 ) } 34

Functionbwas determined by experiment and was

Vﬁz — @2' 02 —
b= 1B, + T VB, (35)
Substituting the value of function b in the expression for the hydraulic resistance coefficient we have
1L, [1+@ —e)e™T] lg” 2,5 ( o

Vihm B V'hy \Rey (9 -+ 0%,)

0. o8 \2 k B _ o 02 _
s ( @y ) ) + } exp <V_———52 L _Vﬁ2>}, (36)

Re, (¢, -+ 0P,) PPy /- 2,8d 1—B, Fr
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where

ey = —n \2
B 0¥ [1 +(By—92) e—der] 4 0.9, (Elﬁz ) [1 + @B, — ) e_k'/Fr]-
fm Pm \ @by /

A comparison of formula (36) with the experimental data of various authors is shown in Fig. 2. It

is evident from Fig. 2 that the theoretical and experimental data agree satisfactorily throughout the range
of variation of the Froude number of the mixture and the discharge gas content,

Thus, by applying the general equation of motion of a multicomponent mixture and using it to close

the semiempirical theory of turbulence we have derived theoretical equations for the friction head loss
in plug flow of a gas—liquid mixture.

NOTATION

dp/ dx is the pressure gradient;

P1) is the density of liquid (gas) phase;

?16) = Fip)/F is the true gas content;

F10) is the cross-sectional area of the tube occupied by liquid (gas) phase;

F is the cross-sectional area of the whole tube;

T1@) = Hy @)y )/ dy) is the viscous stress of liquid (gas) phase;

@) = H@) / Pi@) is the kine‘matic viscosity of liquid (gas) phase;

U 3) is the mean @t point) velocity of liquid (gas) phase;

uf @)x(y) are the fluctuational velocity of liquid (gas) phase along x and y axes;

o @) is the fluctuation of liquid (gas) concentration;

Nyy is the turbulent viscosity;

w, =V 1o/ Pm is the dynamic velocity of the mixture;

Ty is the tangential stress of the mixture of the tube wall;

Pm = P1@y + Ps@y is the density of mixture;

R is the tube radius;

By =Qs/ @ +Qy) is the discharge gas content;

Q1) is the flow rate of liquid (gas) phase;

% is the Karman constant;

Fr = wh,/gd is the Froude number of the mixture;

W = @ +Qy)/F is the velocity of mixture;

k is the mean roughness height of tube wall;

M is the resistance coefficient of liquid phase at g = 0;

A is the resistance coefficient of mixture;

l is the subscript for summation for each phase ¢ =1, 2).
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